156 research outputs found

    Twenty years of "Lipid World": a fertile partnership with David Deamer

    Get PDF
    "The Lipid World" was published in 2001, stemming from a highly effective collaboration with David Deamer during a sabbatical year 20 years ago at the Weizmann Institute of Science in Israel. The present review paper highlights the benefits of this scientific interaction and assesses the impact of the lipid world paper on the present understanding of the possible roles of amphiphiles and their assemblies in the origin of life. The lipid world is defined as a putative stage in the progression towards life's origin, during which diverse amphiphiles or other spontaneously aggregating small molecules could have concurrently played multiple key roles, including compartment formation, the appearance of mutually catalytic networks, molecular information processing, and the rise of collective self-reproduction and compositional inheritance. This review brings back into a broader perspective some key points originally made in the lipid world paper, stressing the distinction between the widely accepted role of lipids in forming compartments and their expanded capacities as delineated above. In the light of recent advancements, we discussed the topical relevance of the lipid worldview as an alternative to broadly accepted scenarios, and the need for further experimental and computer-based validation of the feasibility and implications of the individual attributes of this point of view. Finally, we point to possible avenues for exploring transition paths from small molecule-based noncovalent structures to more complex biopolymer-containing proto-cellular systems.711473 - Minerva Foundation; 80NSSC17K0295, 80NSSC17K0296, 1724150 - National Science FoundationPublished versio

    Conservation anchors in the vertebrate genome

    Get PDF
    Genomic segments that do not code for proteins yet show high conservation among vertebrates have recently been identified by various computational methodologies. We refer to them as ANCORs (ancestral non-coding conserved regions). The frequency of individual ANCORs within the genome, along with their (correlated) inter-species identity scores, helps in assessing the probability that they function in transcription regulation or RNA coding

    Ancient genomic architecture for mammalian olfactory receptor clusters

    Get PDF
    BACKGROUND: Mammalian olfactory receptor (OR) genes reside in numerous genomic clusters of up to several dozen genes. Whole-genome sequence alignment nets of five mammals allow their comprehensive comparison, aimed at reconstructing the ancestral olfactory subgenome. RESULTS: We developed a new and general tool for genome-wide definition of genomic gene clusters conserved in multiple species. Syntenic orthologs, defined as gene pairs showing conservation of both genomic location and coding sequence, were subjected to a graph theory algorithm for discovering CLICs (clusters in conservation). When applied to ORs in five mammals, including the marsupial opossum, more than 90% of the OR genes were found within a framework of 48 multi-species CLICs, invoking a general conservation of gene order and composition. A detailed analysis of individual CLICs revealed multiple differences among species, interpretable through species-specific genomic rearrangements and reflecting complex mammalian evolutionary dynamics. One significant instance involves CLIC #1, which lacks a human member, implying the human-specific deletion of an OR cluster, whose mouse counterpart has been tentatively associated with isovaleric acid odorant detection. CONCLUSION: The identified multi-species CLICs demonstrate that most of the mammalian OR clusters have a common ancestry, preceding the split between marsupials and placental mammals. However, only two of these CLICs were capable of incorporating chicken OR genes, parsimoniously implying that all other CLICs emerged subsequent to the avian-mammalian divergence

    Spontaneous chiral symmetry breaking in early molecular networks

    Get PDF
    Background: An important facet of early biological evolution is the selection of chiral enantiomers for molecules such as amino acids and sugars. The origin of this symmetry breaking is a long-standing question in molecular evolution. Previous models addressing this question include particular kinetic properties such as autocatalysis or negative cross catalysis. Results: We propose here a more general kinetic formalism for early enantioselection, based on our previously described Graded Autocatalysis Replication Domain (GARD) model for prebiotic evolution in molecular assemblies. This model is adapted here to the case of chiral molecules by applying symmetry constraints to mutual molecular recognition within the assembly. The ensuing dynamics shows spontaneous chiral symmetry breaking, with transitions towards stationary compositional states (composomes) enriched with one of the two enantiomers for some of the constituent molecule types. Furthermore, one or the other of the two antipodal compositional states of the assembly also shows time-dependent selection. Conclusion: It follows that chiral selection may be an emergent consequence of early catalytic molecular networks rather than a prerequisite for the initiation of primeval life processes. Elaborations of this model could help explain the prevalent chiral homogeneity in present-day living cells. Reviewers: This article was reviewed by Boris Rubinstein (nominated by Arcady Mushegian), Arcady Mushegian, Meir Lahav (nominated by Yitzhak Pilpel) and Sergei Maslov

    Common peptides shed light on evolution of Olfactory Receptors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Olfactory Receptors (ORs) form the largest multigene family in vertebrates. Their evolution and their expansion in the vertebrate genomes was the subject of many studies. In this paper we apply a motif-based approach to this problem in order to uncover evolutionary characteristics.</p> <p>Results</p> <p>We extract deterministic motifs from ORs belonging to ten species using the MEX (Motif Extraction) algorithm, thus defining Common Peptides (CPs) characteristic to ORs. We identify species-specific CPs and show that their relative abundance is high only in fish and frog, suggesting relevance to water-soluble odorants. We estimate the origins of CPs according to the tree of life and track the gains and losses of CPs through evolution. We identify major CP gain in tetrapods and major losses in reptiles. Although the number of human ORs is less than half of the number of ORs in other mammals, the fraction of lost CPs is only 11%.</p> <p>By examining the positions of CPs along the OR sequence, we find two regions that expanded only in tetrapods. Using CPs we are able to establish remote homology relations between ORs and non-OR GPCRs.</p> <p>Selecting CPs according to their evolutionary age, we bicluster ORs and CPs for each species. Clean biclustering emerges when using relatively novel CPs. Evolutionary age is used to track the history of CP acquisition in the collection of mammalian OR families within HORDE (Human Olfactory Receptor Data Explorer).</p> <p>Conclusion</p> <p>The CP method provides a novel perspective that reveals interesting traits in the evolution of olfactory receptors. It is consistent with previous knowledge, and provides finer details. Using available phylogenetic trees, evolution can be rephrased in terms of CP origins.</p> <p>Supplementary information is also available at <url>http://adios.tau.ac.il/ORPS</url></p

    GeneTide—Terra Incognita Discovery Endeavor: a new transcriptome focused member of the GeneCards/GeneNote suite of databases

    Get PDF
    GeneCards® is an automatically mined database of human genes that strives to create, along with its auxiliary databases—GeneLoc, GeneNote and GeneAnnot—the most inclusive resource of gene-centered information of the human genome. GeneTide, the Gene Terra Incognita Discovery Endeavor (http://genecards.weizmann.ac.il/genetide/), the newest addition to this family, is a transcriptome-focused database which aims to enhance GeneCards with additional expressed sequence tag (EST)-based genes. This is achieved by comprehensively mapping >85% of the ∼5.6 million human ESTs currently available at dbEST to known genes by means of data mining and integration of genomic resources including UniGene, DoTS, AceView and in-house resources. GeneTide thus creates comprehensive links between ESTs and GeneCards genes. Furthermore, groups of unassociated transcripts serve as a basis for defining novel EST-based GeneCards Candidates (EGCs). These EGCs, nearly 25 000 of which were defined in version 0.3 of GeneTide, are further annotated with various parameters, including splicing evidence and expression data extracted from the GeneNote database, to determine their validity as possible de novo genes

    Widespread ectopic expression of olfactory receptor genes

    Get PDF
    BACKGROUND: Olfactory receptors (ORs) are the largest gene family in the human genome. Although they are expected to be expressed specifically in olfactory tissues, some ectopic expression has been reported, with special emphasis on sperm and testis. The present study systematically explores the expression patterns of OR genes in a large number of tissues and assesses the potential functional implication of such ectopic expression. RESULTS: We analyzed the expression of hundreds of human and mouse OR transcripts, via EST and microarray data, in several dozens of human and mouse tissues. Different tissues had specific, relatively small OR gene subsets which had particularly high expression levels. In testis, average expression was not particularly high, and very few highly expressed genes were found, none corresponding to ORs previously implicated in sperm chemotaxis. Higher expression levels were more common for genes with a non-OR genomic neighbor. Importantly, no correlation in expression levels was detected for human-mouse orthologous pairs. Also, no significant difference in expression levels was seen between intact and pseudogenized ORs, except for the pseudogenes of subfamily 7E which has undergone a human-specific expansion. CONCLUSION: The OR superfamily as a whole, show widespread, locus-dependent and heterogeneous expression, in agreement with a neutral or near neutral evolutionary model for transcription control. These results cannot reject the possibility that small OR subsets might play functional roles in different tissues, however considerable care should be exerted when offering a functional interpretation for ectopic OR expression based only on transcription information

    The MATCHIT automaton : exploiting compartmentalization for the synthesis of branched polymers

    Get PDF
    We propose an automaton, a theoretical framework that demonstrates how to improve the yield of the synthesis of branched chemical polymer reactions. This is achieved by separating substeps of the path of synthesis into compartments. We use chemical containers (chemtainers) to carry the substances through a sequence of fixed successive compartments. We describe the automaton in mathematical terms and show how it can be configured automatically in order to synthesize a given branched polymer target. The algorithm we present finds an optimal path of synthesis in linear time. We discuss how the automaton models compartmentalized structures found in cells, such as the endoplasmic reticulum and the Golgi apparatus, and we show how this compartmentalization can be exploited for the synthesis of branched polymers such as oligosaccharides. Lastly, we show examples of artificial branched polymers and discuss how the automaton can be configured to synthesize them with maximal yield

    Assessing natural variations in gene expression in humans by comparing with monozygotic twins using microarrays

    Get PDF
    Quantitative variation in gene expression in humans is the outcome of various factors, including differences in genetic background, gender, age, and environment. However, the extent of the influence of these factors on gene expression is not clear. We attempted to address this issue by carrying out gene expression profiling in blood leukocytes with 13 individuals (including 5 pairs of monozygotic twins) on 10,000 genes using HG-U95Av2 oligonucleotide microarrays. The proportion of differentially expressed genes between monozygotic twins was low (up to 1.76%). Most of the variations belonged to the least variable category. These genes, exhibiting "random variations," did not show clear preference to any functional class, although "signaling and communication" and "immune and related functions" generally topped the list. The extent of variation in gene expression increased in comparisons between unrelated individuals (up to 14.13%). Most of the genes (89%) exhibiting random variations in twins also varied in expression in unrelated individuals. As with twins, signaling and communication topped the list, and substantial variations were observed in all three categories: least variable, moderately variable, and most variable. An important outcome of this study was that the housekeeping genes were nearly insensitive to random variations but appeared to be more susceptible to genetic differences. However, the highly expressed housekeeping genes exhibited low variation and appeared to be insensitive to all known factors. Gene expression profiling in monozygotic twins can provide useful data for the assessment of natural variation in gene expression in humans
    • …
    corecore